Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 14(10)2022 09 20.
Article in English | MEDLINE | ID: covidwho-2043981

ABSTRACT

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.


Subject(s)
Baculoviridae , COVID-19 , Humans , Animals , Baculoviridae/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/genetics , Angiotensin II , Insecta , Antibodies, Monoclonal
2.
J Virol ; 96(13): e0068522, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1891738

ABSTRACT

Since its outbreak in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread with high transmission efficiency across the world, putting health care as well as economic systems under pressure. During the course of the pandemic, the originally identified SARS-CoV-2 variant has been multiple times replaced by various mutant versions, which showed enhanced fitness due to increased infection and transmission rates. In order to find an explanation for why SARS-CoV-2 and its emerging mutated versions showed enhanced transmission efficiency compared with SARS-CoV (2002), an enhanced binding affinity of the spike protein to human angiotensin converting enzyme 2 (hACE2) has been proposed by crystal structure analysis and was identified in cell culture models. Kinetic analysis of the interaction of various spike protein constructs with hACE2 was considered to be best described by a Langmuir-based 1:1 stoichiometric interaction. However, we demonstrate in this report that the SARS-CoV-2 spike protein interaction with hACE2 is best described by a two-step interaction, which is defined by an initial binding event followed by a slower secondary rate transition that enhances the stability of the complex by a factor of ~190 (primary versus secondary state) with an overall equilibrium dissociation constant (KD) of 0.20 nM. In addition, we show that the secondary rate transition is not only present in SARS-CoV-2 wild type ("wt"; Wuhan strain) but also found in the B.1.1.7 variant, where its transition rate is 5-fold increased. IMPORTANCE The current SARS-CoV-2 pandemic is characterized by the high infectivity of SARS-CoV-2 and its derived variants of concern (VOCs). It has been widely assumed that the reason for its increased cell entry compared with SARS-CoV (2002) is due to alterations in the viral spike protein, where single amino acid residue substitutions can increase affinity for hACE2. So far, the interaction of a single unit of the CoV-2 spike protein has been described using the 1:1 Langmuir interaction kinetic. However, we demonstrate here that there is a secondary state binding step that may be essential for novel VOCs in order to further increase their infectivity. These findings are important for quantitatively understanding the infection process of SARS-CoV-2 and characterization of emerging SARS-CoV-2 variants of spike proteins. Thus, they provide a tool for predicting the potential infectivity of the respective viral variants based on secondary rate transition and secondary complex stability.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Humans , Kinetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Structure, Secondary , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
Biomedicines ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1686608

ABSTRACT

Severe respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious beta-class coronavirus. Although vaccinations have shown high efficacy, the emergence of novel variants of concern (VOCs) has already exhibited traits of immune evasion. Thus, the development of tailored antiviral medications for patients with incomplete, inefficient, or non-existent immunization, is essential. The attachment of viral surface proteins to the cell surface is the first crucial step in the viral replication cycle, which for SARS-CoV-2 is mediated by the high affinity interaction of the viral trimeric spike with the host cell surface-located human angiotensin converting enzyme-2 (hACE2). Here, we used a novel and efficient next generation sequencing (NGS) supported phage display strategy for the selection of a set of SARS-CoV-2 receptor binding domain (RBD)-targeting peptide ligands that bind to the target protein with low µM to nM dissociation constants. Compound CVRBDL-3 inhibits the SARS-CoV-2 spike protein association to hACE2 in a concentration-dependent manner for pre- as well as post-complex formation conditions. Further rational optimization yielded a CVRBDL-3 based divalent compound, which demonstrated inhibitory efficacy with an IC50 value of 47 nM. The obtained compounds were not only efficient for the different spike constructs from the originally isolated "wt" SARS-CoV-2, but also for B.1.1.7 mutant trimeric spike protein. Our work demonstrates that phage display-derived peptide ligands are potential fusion inhibitors of viral cell entry. Moreover, we show that rational optimization of a combination of peptide sequences is a potential strategy in the further development of therapeutics for the treatment of acute COVID-19.

4.
Sci Rep ; 10(1): 21393, 2020 12 07.
Article in English | MEDLINE | ID: covidwho-1387456

ABSTRACT

Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antigens, Viral/biosynthesis , Cloning, Molecular , Recombinant Proteins/biosynthesis , SARS-CoV-2/immunology , Animals , HEK293 Cells , Humans , Protein Stability , Spodoptera
5.
Methods Mol Biol ; 2305: 129-140, 2021.
Article in English | MEDLINE | ID: covidwho-1355903

ABSTRACT

The expression of mammalian recombinant proteins in insect cell lines using transient-plasmid-based gene expression enables the production of high-quality protein samples. Here, the procedure for virus-free transient gene expression (TGE) in High Five insect cells is described in detail. The parameters that determine the efficiency and reproducibility of the method are presented in a robust protocol for easy implementation and set-up of the method. The applicability of the TGE method in High Five cells for proteomic, structural, and functional analysis of the expressed proteins is shown.


Subject(s)
Biotechnology/methods , Cloning, Molecular , Insecta/metabolism , Spike Glycoprotein, Coronavirus/biosynthesis , Transfection/methods , Animals , Bioreactors , Cell Culture Techniques/methods , Cell Line , Gene Expression , Glycosylation , Humans , Insecta/cytology , Mammals/genetics , Mammals/metabolism , Plasmids , Proteomics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Reproducibility of Results , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Cell Rep ; 36(4): 109433, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1300649

ABSTRACT

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Humans , Mutation/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL